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Abstract

The flow field due to an impinging jet at a moderately high Reynolds number, emanating from a rectangular slot nozzle has been
computed using a large eddy simulation (LES) technique. A dynamic subgrid-scale stress model has been used for the small scales of
turbulence. Quite a few successful applications of the dynamic subgrid-scale stress model use planar averaging to avoid ill condi-
tioning of the model coefficient. However, a novel localization procedure has been attempted herein to find out the spatially varying
model coeflicient of the flow. The flow field is characterized by entrainment at the boundaries. Periodic boundary conditions could
not be used on all the boundaries. The results reveal the nuances of the vortical structures that are characteristic of jet flows. The
stress budget also captures a locally negative turbulence production rate. The calibration of the model has been made through
prediction of the normalized axial velocity profile and heat transfer on the impingement plate. The computed results compare
favorably with the experimental observations, especially in the stagnation zone. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Impinging jets are used for several industrial applications.
Jet impingement is a common concern for the aerodynamicists
dealing with VSTOL aircrafts. The ground impingement of
single or multiple jets and the influence of upwash fountains on
ground-based structures during the take-off operation are
challenging topics of research. Impinging jets are also used for
heating, cooling and drying of impingement surfaces. The jets
emanate from the nozzles as laminar, but the evolution of
instability and the eventual transition to turbulence take place
a little distance in the downstream of the orifice (Becker and
Massaro, 1968). For a round jet, a stagnation point is formed
at the center on the impingement surface (Gutmark et al.,
1978). The flow develops along the impingement surface in the
form of a wall jet. In the stagnation zone, the strong acceler-
ation keeps the boundary layer laminar (Martin, 1977). A
second transition is usually brought about immediately after
the jet is transformed near the wall into a decelerated wall jet.
The heat or mass transfer rate at the stagnation point is very
high. Away from the stagnation point, a rapid variation of
heat transfer is observed. In the case of a second transition,
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another peak in transport rate is attained (Martin, 1977).
Gardon and Akfirat (1965) observed that the level of turbu-
lence in the jet had a strong influence on the rate of heat
transfer from the impingement plate. They deployed slot jets
impinging on a flat plate. Donaldson et al. (1971) used a round
jet and found that the heat transfer characteristics, away from
the stagnation point, are similar to a normal turbulent
boundary layer in an external flow having a free-stream
velocity equal to the local maximum velocity in the wall jet.
Experimental investigations of heat transfer by jets on im-
pingement surfaces have been summarized by Viskanta (1993).

The strongest indication of a coherent structure in the self-
preserving region of a plane jet is the flapping of a jet in still
air. The presence of such large-scale organized structures
(Mumford, 1982) in a plane jet has been established by An-
tonia et al. (1983). It is possibly worth mentioning that the
local flapping can be eliminated (Bradbury, 1965) by a moving
external stream. In another study, Antonia et al. (1986)
showed an intimate connection between the double-roller ed-
dies of a plane jet and the span-wise eddies of a Karman vortex
street. They also found that the contributions by the coherent
and random motions to the averaged momentum and thermal
energy transport are generally of the same order of magnitude.

Craft et al. (1993) have reported numerical simulations of
turbulent impinging jets. The authors evaluated various tur-
bulence models for predicting the heat transfer in the stagna-
tion region. None of the models was able to yield satisfactory
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Notation

B slot nozzle width

C model parameter of eddy viscosity model, Eq. (15)

conv convective terms of Navier—Stokes equations,
Eq. (7)

diff diffusive terms of Navier—Stokes equations, Eq. (7)

H height of the computational domain

h nozzle-to-plate spacing, non-dimensionalized with B

k turbulent kinetic energy

L nozzle length

Nu Nusselt number, given by Eq. (38)

D pressure

P production rate of turbulence

Pr Prandtl number of the fluid

q heat flux between impingement plate and fluid

Re Reynolds number

S hydraulic diameter (2B)

T temperature

t time

u velocity component in x-direction

v velocity component in y-direction

w velocity component in z-direction
Win nozzle exit velocity

W width of the computational domain
x,y,z  spatial coordinates

Greeks

v kinetic viscosity

T turbulent shear stress

(2] non-dimensional temperature, T/T;,
Subscripts

00 ambience

av average

B slot width

in inflow plane

max maximum

w wall

Superscripts

* intermediate level

n current time-step

! subgrid scale component

" fluctuating component

results in the stagnation zone. The eddy viscosity model
achieved very poor agreement with the experiments because of
the basic weakness of the eddy viscosity stress—strain relation.
Three other models were of the second moment closure type.
Two of them failed due to the incorrect response of its sub-
model of the wall-reflection process in a stagnating strain field.
The third model worked reasonably well but needed a refine-
ment in the sublayer region through a low-Reynolds number
second moment closure. Leschziner and Ince (1994) and Suga
(1995) have performed numerical simulation of turbulent im-
pinging jets by making use of Reynolds stress transport models
and nonlinear k— models, respectively.Both the investigations
show marked improvements in flow predictions compared to
the standard k—¢ predictions. The nonlinear k—¢ model predicts
heat transfer in satisfactory agreement with the experimental
results of Baughn and Shimizu (1989).

The flow field of an impinging jet is quite complex.
However, direct numerical simulation (DNS) is the proper
approach to analyze such complex flows.In order to resolve all
scales of motion by the DNS approach the number of grid
points needed is order of Re”/*. Large eddy simulation (LES) is
a technique intermediate between the direct simulation of
turbulent flows and the solution of the Reynolds-averaged
equations through closure approximations. In LES, the con-
tribution of the large-scale structures to momentum and en-
ergy transfer is computed directly and the effect of the smallest
scales of turbulence is modeled. Since the small scales are more
homogeneous and universal and less affected by the boundary
conditions than the large eddies, the modeling here is generally
more acceptable. However, while it still requires reasonably
fine meshes, it can be used at much higher Reynolds number
than DNS. If the small scales obey inertial range dynamics, the
cost of computation is independent of Reynolds number
(Piomelli, 1994).

Laschefski et al. (1994, 1996, 1997) have presented flow
and temperature fields of laminar impinging jets. In their
investigations, the nozzle height from the impingement sur-
face and Reynolds numbers were varied. It has been found
that for a given geometry (e. g. distance of the nozzle from
the surface is 2B, where B is the slot width), the flow field
changes from steady laminar to unsteady periodic at

Reyp > 400 and to aperiodic at Re,z > 600 (Laschefski et al.,
1994).

Gao and Voke (1995) have presented the results of LES of
thermally inhomogeneous jets issuing into an enclosed pool
and impinging on a plate. Voke and Gao (1998) have further
extended the investigation and shown that the mean temper-
ature distribution in the jet serves to concentrate cold fluid
near the boundaries and hot fluid near the centre, leading to a
hot jet impingement on the plate and cold fluid in the recir-
culating regions. A closer observation reveals the strong at-
tenuation of the thermal eddies as they move towards the
plate.

The purpose of the present work is to perform LES of the
flow field of axial jets emanating from a rectangular slot nozzle
and impinging on a heated flat surface. The results are ex-
pected to reveal the detailed flow structure, form a basis of
understanding the flow phenomena and predict the heat
transfer accurately at the stagnation point.

2. Basic equations and method of solution

Fig. 1 shows the geometry of interest. It consists of a semi-
enclosed rectangular slot jet of width B and length L,. The
impingement plate is of length L, and the distance between the
impingement plate and the top wall is 7 = L,.

All velocity variables are non-dimensionalized by w;, and
the length dimensions are non-dimensionalized by the slot
width B. If the Navier—Stokes equations are approximated by
a finite difference (or finite volume) scheme, then an approxi-
mation filter (top hat filter) is introduced which filters out all
subgrid-scales with scales smaller than A, where 4 is the filter
size. In the finite difference procedure (Schumann, 1975)

E (1)

where 4; is the grid size in x, y- and z-direction.

If the filtering operation is applied to the governing equa-
tions, the filtered Navier-Stokes and continuity equations for
an incompressible flow assume the form

Z = (212223)
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Fig. 1. Imping slot jet, geometry and coordinates system.
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where the index i = 1,2, 3 refers to the x-, y- and z-directions,
respectively, and repeated indices imply summation. The
Reynolds number is defined as Reg = wi,B/v. The term t;;
defines the subgrid scale stresses, which may be written as

vy = (it + ) + ). )

The overbar represents the filter operator and prime denotes
subgrid scale components. The subgrid scale stresses are
computed using a dynamic subgrid-scale model.In the present
simulation, we have used top hat filters in the spatial directions
consistent with the use of finite differences (finite volume dis-
cretization) in these directions. With the choice of such filters,
it can be shown that the difference (wu,) — %z, is of second
order in the filter width which is the same as the truncation
error in the second-order differencing method used in this
analysis. Thus replacing (%%;) by %;, the momentum equa-
tion (3) may be rewritten as

ou; 0 () p 1 w0

i) = — _ % 5
ot +6x,- Hili 0x;  Rez Ox7  Qx; R )

The energy equation for incompressible flows may be corre-
spondingly written as
—_— - Ve -1 6
ot x; ReBPrV ox;’ ©)

where O is the resolved-scale temperature (non-dimensional-
zied), ¢; is the subgrid scale heat transfer and will be defined
later in an analogous way to 7;;. Air has been assumed as the
working fluid hence the Prandtl number, Pr of the fluid in this
simulation has been taken as 0.7.

A fractional-step finite-difference method due to Kim and
Moin (1985) has been used to solve the set of equations (2) and
(5) on a staggered grid arrangement (Harlow and Welch,
1965). The discretization scheme is second order in space
(central differences). The important factors in the choice of the
spatial differencing strategy are the formal order of accuracy
and the global conservation properties of the numerical
scheme. The order of accuracy relates the accuracy of the so-

lution whereas the conservative property improves the stability
of the scheme, and the physical realism of the predicted fields.
Temporal and spatial accuracy are extremely important in
LES. The numerical scheme must be second order on a stag-
gered grid and fourth order on a collocated grid. Mittal and
Moin (1997) have recently shown that the second-order central
differencing with staggered grid provides the energy spectra
that is in excellent agreement with its experimental counter-
part. In another recent study, turbulent boundary layer sepa-
rating at a backstep has been investigated by Le et al. (1997)
with a second-order central difference scheme on staggered
grids. The simulation provides excellent match with the con-
current experimental data. For the convective terms the Ad-
ams—Bashforth method is used in order to ensure second-order
accuracy in time. The viscous terms are discretized by the
Crank—Nicholson scheme. A two-step time advancement
scheme starts with the calculation of an intermediate velocity
field, u; as

ur—u" 3 1 1 . .

4 Atul = —Econv” +§c0nv""' +ap (diff” + diff"™"),  (7)
where the convective and diffusive terms are denoted by conv
and diff. The index n symbolizes the current time-step, (n — 1)
stands for the previous time-step and * signifies the interme-
diate step. The velocities for the next time-step (n + 1) are re-

lated to the intermediate values through
u =ut + Arvpt (8)

Invoking the continuity equation (2) in Eq. (8) one obtains the
following Poisson equation for the pressure field:

1
2o+l 7 Lt
Y%7 _Atv u;. )

Once Eq. (9) is solved, the intermediate velocity field u is
corrected to yield the velocity field for the next time-step in the
following way:

artt =u; — Arvp"t. (10)

The energy equation (6) can be treated in the same way as the
momentum equations (Grotzbach, 1986) and, from the re-
solved scale temperature fields at different time levels, the time-
averaged temperature field is finally obtained.

2.1. Subgrid-scale closure

The terms 7;; and ¢; in Egs. (5) and (6) are the contribution
of small scales to the large-scale transport equation. In the
volume averaging approach of Schumann (1975), #; is constant
within each control volume and u; = 0. Finally, Eq. (4) will
assume the form

Ty = U (11a)

and in a similar way
q; = u}@/ (llb)

as mentioned earlier, the overbar represents the filter operator.
These stresses are similar to the classical Reynolds stresses that
result from time- or ensemble-averaging of the advection
fluxes, but differ in that they are consequences of spatial av-
eraging and go to zero if the filter width 4 goes to zero.

The most commonly used subgrid scale model of Smago-
rinski (1963) is based on the gradient transport hypothesis,
which correlates t;; to large-scale strain-rate tensor

— 0;f
T = —2vpS; + ?]Tklm (123')

and in a similar manner
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where v7 is the eddy viscosity, d;; is the Kronecker delta, Pr; is
the turbulent Prandtl number, 7, = wju) and S;; is given by

1 (ou; Ou;
= L. 13
” 2(ax,-+ax,-> (13)
Lilly (1967) proposed the following formula to obtain the eddy
viscosity:

q;=— (12b)

%]}

v = (CsA)°[3]. (14)

Here Cs is % constant, A is the grid filter scale and
IS| = (25,S;;) '". Substitution of (14) in (12a) yields

T %Tkk = ZCZZB}SU’ = —2CB;. (15)

The quantity C is the Smagorinsky coefficient and it depends
on the type of flow under consideration (Canuto and Cheng,
1997). Germano et al. (1991) and Lilly (1992) suggested a
method to calculate C, for each time-step and grid-point,
dynamically from field data. In addition to the grid filter
(denoted by an overbar), which signifies the resolved and
subgrid scales, a test filter (denoted by a caret over the overbar)
is used. The width of the test filter is larger than the grid filter
width. The test filter defines a new set of stresses: the test-level
subgrid-scale stresses or subtest-scale stresses, T;; given by

Ty = it — ;. (16)

Eq. (16) can also be expressed in terms of the Smagorinsky
closure as

0 NS
Tij — ?/ Tkk = —2CA2|S|SU = —2CO(,']‘, (17)
where
=~ 1 (om ou
S == —=24+=—= 18
! 2<6xj+6x,~> (18)
and
N N oA oA \1/3 PR
A= (A1A2A3) . AA=2. (19)

The major contribution to the subgrid-scale model brought
about by Germano et al. (1991) is the identification that con-
sistency between (15) and (17) depends on a proper choice of
C. This is achieved by subtraction of the test-scale average of

7; from Tj, (see Lilly, 1992; Hoffmann and Benocci, 1994;
Najjar and Tafti, 1996) to obtain
0 R —
with
R R
B, =A4|S[S,, (21)
Ojj = 22}§|S‘U (22)

Egs. (15), (17), (20), (21) and (22) are five independent equa-
tions which cannot be solved for the model constant C because
it appears in a filter operation (Eq. (20)). Lilly (1992) and Zang
et al. (1993) have suggested the following assumption:

C/‘ﬂ\ij = CBijv (23)

which enables Eq. (20) to be written in the form

E,'j = L,’j + ZCOCU - 2Cﬂ (24)

i

E;; is the residue of Eq. (24). Application of the least-squares
technique to minimize the residual gives the following ex-
pression for C:

1 <Lij(‘xij - ﬂ[j»
C=—= ~ , 25
2 <(O(m,, - ﬂmn)(amn - ﬂmn)) ( )

where

Ly = ti; — ;4 (26)
and ( ) means an average over a plane in the model for which
the flow is homogeneous. The least-square minimization
technique has been used by Piomelli (1994) to compute the
flow in a plane channel at Reynolds numbers between 200 and
2000. A limitation of the dynamic model is the plane averaging
mentioned earlier. For an essentially three-dimensional flow
like the rectangular impinging jet, we propose to use a local
averaging over the test filter cell. Zang et al. (1993) performed
this local averaging and also constrained the effective viscosity
(molecular and eddy viscosity) to be non-negative for recir-
culating flows.

In addition to the above-mentioned local averaging, we
perform a modification of Eq. (23) as suggested by Piomelli
and Liu (1995). Mathematically, Eq. (23) is inconsistent be-
cause C ceases to be a function of space (Piomelli and Liu,
1995). Ghosal et al. (1995) have developed a consistent pro-
cedure without making use of the least-square approach. It is
necessary to obtain the solution of an integral equation for
calculating C by this procedure. The computational effort as-
sociated with the iterative solution is significantly high.
Piomelli and Liu (1995) have suggested a simpler approach
based on modification of Eq. (20) as

On the right-hand side an estimate of the coefficient C is
substituted by C*. The value of C* is assumed to be known. In
the event, minimization of the sum of the squares results in

1 L," — 26‘/*\1 Oij
Clrry,) = - Lo =20y

2 Olmn Omn

(28)

This is the equation used here for calculating the model coef-
ficient C. There are various ways to obtain C* at time-step .
Piomelli and Liu (1995) indicated that there is no significant
difference between zeroth- and first-order approximations for
estimating C*. The present computation uses a zeroth-order
approximation through the value at the previous time-step.

cr=c (29)

Even though we have used the local averaging procedure of
Zang et al. (1993) spurious values of C appeared during the
calculation. After averaging, the following additional con-
straint was imposed on the averaged C:

C>0. (30)

This restriction is necessary to avoid negative viscosity (Ghosal
et al., 1995). Thus, once v; is known, 7; and ¢; can be com-
puted from Egs. (12a) and (12b).

2.2. Boundary conditions

At the exit of the jet, a constant velocity profile and, at the
fixed walls, no-slip conditions are assumed. At the lower (im-
pingement) plate, the no-slip condition is implemented for the
diffusive terms by direct calculation of the near wall flow using
a locally fine grid. A linear velocity profile for the wall gradi-
ents is assumed (similar to laminar calculations). Therefore the
distance between the center of the near wall grid cells and the
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impingement plate (z; =z,Re;) is smaller than 1. The pa-
rameter Re, is the Reynolds number based on friction velocity
u.. At the upper wall, the logarithmic velocity profile (Cziesla
et al., 1996) for calculation of the averaged (denoted by ( ))
wall shear stress distribution has been used. The approach
described in Schumann (1975) sets

Ty _ (o) (31)

for the instantaneous wall shear stress t,,. The resultant ve-
locity at the near wall cell is U,,. Periodic boundary conditions
are used at y=0 and y =2. The exit planes (x = —5 and
x = 5) have inflow from the local ambient due to entrainment
effect (Laschefski et al., 1994); the exit boundary conditions
have to be derived. Integration of Eq. (9) gives

[[[orma=g [ [ewe @

Application of the Gauss divergence theorem leads to

/a/G(afg:])dS:i//G/(v,y*)dv. (33)

It is easy to show that the commonly used pressure boundary
condition, such as, zero first derivative, cannot be used for jet
flows. Since the intermediate velocity field % is only the so-
lution of momentum equations and does not fulfil the global
continuity, the left-hand side of Eq. (33) cannot be equated to
zero. Our investigation for laminar impinging jets produced
good results with p = p,, the ambient pressure at the exit (see
Laschefski et al., 1994). For the present situation, we imple-
mented a condition suggested by Childs and Nixon (1986) and
Grinstein et al. (1987) so that pressure fluctuations across the
exit plane are possible

Pe=0.7p; + 0.3p . (34)

The pressure at the exit plane, p. is an interpolated value be-
tween the pressure of the last interior cell of the domain, p; and
the ambient pressure, which is known a priori.

Vanishing first derivative conditions for the tangential ve-
locities are assumed at the exit. The normal velocity, as usual
for the interior points on the exit plane is set to

at = — ArVpT. (35)

2.3. Computational domain and grid size

The width of the domain (see Fig. 1), L, in the y-direction is
2. As such the extent of the y-dimension is assumed large and
L, is the dimension of a periodic element. It may be mentioned
here that the dimensions of the large-scale structures in this
direction have been found to be less than L, = 2 (see Cziesla,
1998). The height of the computational domain, # has been
varied between 8 and 12; the length, L, is 10. A uniform ve-
locity profile of wy, =1 is deployed at the exit of the nozzle
slot. Computations have been performed with a grid of
152 x 22 x 79 = 264176 cells. In the implementation of LES
the filter size is taken equal to the grid size. Therefore, in-
creasing the resolution changes the problem by invoking new
modes. Hence the usual concept of grid independence in the
standard implementation of LES is absent (Ghosal, 1999).
However, the Nusselt number being a derived parameter of
final interest from the solution, a grid sensitivity test was
performed by using grid meshes of 102 x 18 x 75 and
182 x 26 x 81. The average Nusselt number due to the present
grid mesh differs from that of the extrapolated grid-insensitive

situation by less than 2%. However, for the present grid, the
size of Ax is 0.05 between x = —0.05 and +0.5. Outside this
region, Ax has been increased continuously by 1%. In the y-
direction, a uniform grid of Ay = 0.1 has been used. In the z-
direction, Az =0.00469 has been used on the impingement
plate and then Az has been increased in the normal direction
continuously by a factor of 1.14. For time-averaging, 260
instantaneous fields over 25000 time-steps have been used. The
computations have been performed on an IBM RISC 6000-58
H dedicated Workstation.

3. Results and discussion
3.1. Flow field predictions

Fig. 2 shows instantaneous velocity vectors for a Reynolds
number of 5800 at the y = 1 plane. The jet shows a laminar
structure at the exit and the laminar regime continues for a
short distance downstream. At z =6 the unstable laminar
shear layers begin to break down to vortices. In the figure, the
letters L (for the left side) and R (for the right side) have de-
noted these vortices and the motion of the individual vortices
has been examined as they move along the surface and out of
the domain of interest. The flow shows a somewhat steady
character near the impingement point. After the impingement,
the jet forms into two wall jets on the surface. Entrainment
from the upper part of the domain is induced by vortices
wrapping the ambient fluid about themselves.

Gutmark and Wygnanski (1976) indicate that the mean
axial velocity on the jet-axis decays linearly with axial distance.
In the present study, the distribution of the normalized jet
axial velocity w/w,, along x/b,, at different distances, (z) from
the impingement plate has been analyzed. Fig. 3(a) shows the
self-similar development of the axial velocity between z = 12
and z = 4. The present computation compares reasonably well
with the experimentally obtained Gaussian-like curve of
Namer and Otiigen (1988). The comparison supports the
predictive accuracy of the simulation. The temperature field
depends strongly upon the accuracy of the velocity field, and
thus it is essential that the velocity field for the present com-
putations should compare favorably with experiments. The
small discrepancy at larger x (x = 0 being the jet axis) can be
attributed to the difference in local ambient conditions between
the experiment and the numerical simulation. For this partic-

Fig. 2. Instantaneous velocity vectors on x—z plane, Rez = 5800.
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ular case, the axial velocity was averaged over the width of the
domain of interest to obtain a two-dimensional field. The
height of the computation domain was taken as z = 20 and the
Reynolds number was Rez = 10000. The variable, by, is the
half-width of the jet, the distance from the jet axis to the point
where the axial velocity has fallen to half its centerline value.
Fig. 3(b) shows the distribution of the root-mean-square value
of the normal component of velocity. As in Fig 3(a), the ve-
locity component was averaged over the width of the domain
of interest for this case as well. Solid squares and triangles
indicate the values corresponding to present investigation. Up
to a distance of & =4, there is a good match between the
predicted values due to present computation and the values
obtained by other researchers. However, for a Reynolds
number of 10000, beyond a distance of & =4, present pre-
dictions deviate from the predictions of Hoffmann and Benocci
(1994). 1t is interesting to note that beyond ¢ = 8, again there
is a good match between the present prediction and the pre-
diction of Hoffmann and Benocci (1994). The predicted values
due to present computation, for a Reynolds number of 2000,
matched quite well with those of experimental values of Namer
and Otligen (1988).

Fig. 4 shows the variation of time-averaged value of the
normal velocity component, (w,,) and the fluctuating quantity,
(w") along z at x = 0 and y = 0. It is to be noted that w' is the
subgrid scale component while w” is the fluctuating compo-
nent. The Reynolds number for this case is 5800 and z = 8. It is
readily seen that (w,) remains essentially constant (equal to

=1
=1
=8
=6
=4

.
Is+0D0
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Fig. 3. (a) Normalized axial velocity distribution of the jet,
Reg = 10000. (b) Distribution of the root-mean-square value of the
normal component of velocity.
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Fig. 4. The decay of time-mean centerline axial velocity and normal-
stress, Rez = 5800.

Wi = 1) down to z=3.5. The decay of (w,) is most pro-
nounced between z = 1 and z = 0. This is in conformity with
the experimental investigation of Gardon and Akfirat (1965),
where they observed that the reduction in impingement ve-
locity started at the distance of a slot-width away from the
plate. The turbulent normal stress (w"?) is essentially zero until
one slot width downstream of the jet exit. Thereafter it in-
creases sharply to the maximal at z = 3.5. From a distance of
0.3B away from the impinging plate, it falls down rapidly to
zero at the stagnation point. On the scales of the figure, we do
not see the variation close to the wall; in fact all the turbulent
quantities vanish at the wall.

A measure of the level of fluctuation is taken to be the root-
mean-square of the fluctuating quantity. The distribution of
turbulent normal stress, (w"?) in the wall normal direction has
been presented in Fig. 5. At x = 0.5 (close to the jet centerline)
the values of (w"?) near z = 2.0 is 0.022 and then the quantity
gradually approaches zero on the impingement plate (z = 0).
At x = 3, we can observe a characteristic feature of wall flows.
For this particular x location, the maximum value of the
normal stress (w”), 0.015, occurs at z=0.9. The turbulent
kinetic energy production rate is the quantity given by

P= f{<u;’u}’> %‘C‘l) } (36)
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Fig. 5. Distribution of turbulent normal stress near the impinging
plate, component perpendicular to the plate, Rez = 5800.



506 T. Cziesla et al. | Int. J. Heat and Fluid Flow 22 (2001) 500-508

Fig. 6(a) shows the distribution of the energy production rate
P in the wall-jet region. The production rate of turbulence, P
sustains the turbulence in the budget equation. Fig. 6(b) shows
the same quantity closer to the wall. Fig. 6(a) indicates that at
a large distance away from the impingement plate the pro-
duction rate is high only for x = 1. At a larger distance from
the jet axis (x > 1) the turbulence production rate is marginal
for z > 2. For x > 1, the region very close to the impingement
plate is influenced by intense interaction between the jet and
the local ambience. The peak values of P at different distances
away from the jet axis are observed to lie in the region
0.5 < z < 1.5. The mathematical expression of P makes it clear
that the gradient of the mean velocities determines the pro-
duction and this serves to exchange kinetic energy between the
mean flow and the turbulence. This helps to explain the high
values of P at the shear layer and close to the impingement
plate (Fig. 6(b)). The term P, in its physical sense, drains ki-
netic energy from the mean flow in the large scales and pro-
duces turbulent energy in the smaller scales. When the term P
becomes negative, the energy flow is in the reverse direction
signifying the energy transfer from the turbulent field to the
mean field. Fig. 6(b) shows that for each x there is a small
region with negative production rate. The negative value be-
comes smaller as z increases.

The production term near the impingement point can be
simplified by ignoring the contributions from shear stresses
and using the continuity relation for a two-dimensional flow
(0{u)/0x = —0(w) /0z) as

x=1
-a--- x=1.5
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Fig. 6. (a) Distribution of production rate of turbulence near the im-
pingement plate (0<z<3.0), Rez = 5800. (b) Distribution of pro-

duction rate of turbulence near the impingement plate (0<z<
0.25), Rep = 5800.

p=={ (- Y, )

The above expression signifies that the production rate of ki-
netic energy near the impingement point is proportional to the
difference of turbulent normal stresses. The present computa-
tion shows (Fig. 7) that near the impingement point, i.e., for
x=0.5and x = 1.0, 0(u)/0x > 0. Hence, the reason for nega-
tive production rate at x = 1, as shown by Fig. 6(b) can be
attributed to the occurrence of ((W"?) — (")) > 0 in the region
of impingement point.

3.2. Prediction of heat transfer

The energy equation can be treated in the same way as the
momentum equations (Grotzbach, 1986). Thus from the re-
solved-scale temperature fields, finally the time-average tem-
perature field is obtained. The local Nusselt number on the
impingement plate is defined as
Nu = 8OV (38)

@w - @in
where 6, and 0;, are the non-dimensional temperature of the
impingement plate and the temperature of the fluid at the
nozzle exit, respectively. The Nusselt number distribution is
averaged over the spanwise (y)-direction to obtain the span-
averaged Nu.

The heat transfer results have been compared with the ex-
perimental results of Sparrow and Wong (1975) and Schliinder
et al. (1970). Fig. 8 compares the computational and experi-
mental span-average Nusselt number distribution for
Reg = 950. The results show satisfactory agreement between
the predicted value and the experiment.

Sparrow and Wong (1975) used a naphthalene sublimation
technique to determine mass transfer rates. Following the
analogy between heat and mass transfer, a correlation was
used to predict the local Nusselt number from local Sherwood
number

Nu = (%)Shf, (39)

where r was set equal to 0.4, the Schmidt number, Sc to 0.25
and the Prandtl number, Pr to 0.7. The small discrepancy
between the numerical and experimental results may be at-
tributed to the inaccuracy of the correlation (e.g. r usually
ranges between 0.33 and 0.4). In the absence of direct experi-
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Fig. 7. Distribution of 0(u)/0x along z (0<z<0.25) at different x
locations, Reg = 5800.
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Fig. 8. Comparison of predicted Nusselt number with the experi-
mental result of Sparrow and Wong (1975).
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Fig. 9. Comparison of predicted Nusselt number with the experi-
mental result of Schliinder et al. (1970).

mental measurements at Rez = 950, we compared our nu-
merical results with the measured values of Schliinder et al.
(1970), who did experiments at a Reynolds number of 6500.
The comparison of span-average Nusselt number distribution
has been shown in Fig. 9. The comparison shows a reasonably
good agreement, especially at the stagnation point. The nu-
merical value of the Nusselt number at the stagnation point is
39.94, whereas Schliinder et al. (1970) predict the stagnation
Nusselt number as 39.70.

4. Concluding remarks

Large eddy simulation has been used to simulate the low
field of an impinging jet emanating from a rectangular slot
nozzle. A localization procedure due to Piomelli and Liu
(1995) has been used to implement the dynamic eddy viscosity.
Exit boundary conditions have been used instead of the more
usual periodic boundary conditions. The computed results
show flow structures of the impinging jet. Distributions of the
mean velocities, the turbulent stresses and the velocity fluctu-
ations have been reported. The self-similar behavior of the
axial velocity confirms the accuracy of the simulation. The
predicted distribution of root-mean-square normal velocity is
verified with the available experimental results. The model is
able to predict subtle features of turbulence production rate.
The negative production rate of turbulent kinetic energy takes

place in the near wall region, close to the jet centerline. Finally,
the computation has been extended to calculate the tempera-
ture field. The heat transfer results were compared with the
experimental results of Sparrow and Wong (1975) and
Schliinder et al. (1970). A good degree of accuracy has been
observed in prediction of heat transfer at the stagnation zone.
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